

MECANIQUE DES FLUIDES

Chapitre 6

EXERCICES

Feuille n°1

CORRECTION

Hydrostatique

EXERCICE 1

Convertir les grandeurs suivantes :

$$P = 1 bar \Rightarrow Pa$$
: par définition, on a $1 bar = 10^5 Pa$

$$P = 6.5 \ bar \Rightarrow P = 6.5 \cdot 10^5 = 65000 \ Pa$$

$$z = 104 \text{ m} \Rightarrow cm$$

$$z = 104 \times 100 = 10400 \text{ cm}$$

Pour convertir z en mm, on a ici deux options car on dispose de z en m et en cm:

Sachant gue dans 1 m on a 1000 mm : $z = 104 \times 1000 = 104000$ mm

Sachant que dans 1 cm on a 10 mm : $z = 10400 \times 10 = 104000 mm$

 $\rho = 1000 \text{ kg} \cdot \text{m}^{-3} \Rightarrow \text{g} \cdot \text{cm}^{-3}$

Il faut s'y prendre en deux temps : convertir les kg en g puis les m^3 en cm^3 .

 $1 kg = 1000 = 10^3 g$

$$1 m^3 = 10^3 \times 10^3 \times 10^3 = 10^9 cm^3$$

Donc,

$$\rho = 1000 \times \frac{10^3}{10^9} = 10^3 \times 10^3 \times 10^{-9} = 10^{-6} \text{ g} \cdot \text{cm}^{-3}$$

EXERCICE 2

On donne des densités de matière ; calculer la masse volumique en $kg \cdot m^{-3}$.

Par définition, la masse volumique est donnée par $d = \frac{\rho}{\rho}$ (pour les solides et les liquides, pas pour les gaz)

avec $\rho_{equ} = 1000 \text{ kg} \cdot \text{m}^{-3}$.

Eau douce (liquide): d=1; là c'est plus que très simple, on a directement (sans calcul) $\rho_{eau}=1000~kg\cdot m^{-3}$.

Mercure: $d = 13.5 \Leftrightarrow d_{mercure} = \frac{\rho_{mercure}}{\rho_{eau}} \Rightarrow \rho_{mercure} = d_{mercure} \times \rho_{eau} = 13.5 \times 1000 = 13500 \text{ kg} \cdot \text{m}^{-3}$

Acier: $d = 7.8 \iff d_{acier} = \frac{\rho_{acier}}{\rho_{eau}} \implies \rho_{acier} = d_{acier} \times \rho_{eau} = 7.8 \times 1000 = 7800 \text{ kg} \cdot \text{m}^{-3}$

Matière X : $d = 2.7 \iff d_X = \frac{\rho_X}{\rho_{eau}} \implies \rho_X = d_X \times \rho_{eau} = 2.7 \times 1000 = 2700 \text{ kg} \cdot \text{m}^{-3}$

Quel est le matériau "X"? Aluminium ou granite ou marbre.

Dans tous les exercices suivants, on considère le fluide au repos.

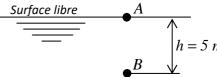
EXERCICE 3

Un plongeur est situé à une profondeur de h=5~m dans l'eau d'un lac ($\rho=1000~kg\cdot m^{-3}$) sur terre ($g=9.81~m\cdot s^{-2}$, $P_{atm}=1~bar$). Calculer la pression à laquelle il est soumis.

L'énoncé ne le dit pas explicitement, mais la profondeur h = 5 m se compte à partir de la surface libre du lac.

Pour bien comprendre, il est conseillé (recommandé) de faire un schéma :

On visualise alors bien le point A, à la surface libre, et le point B, Surface libre éloigné verticalement de $h=5\ m$ (en dessous).



Caractéristiques au point A:

- \Rightarrow Pression : c'est la pression atmosphérique car le point A est en contact avec l'air donc : $p_A = p_{atm} = 1 \, bar = 10^5 \, Pa$ (toujours se ramener aux unités légale, c'est mieux)
- \Rightarrow Altitude: z_A ; la valeur dépend de là où on fixe le zéro sur la verticale à partir duquel on compte les altitudes; le zéro peut être mis où on veut (donc y-compris là où ça nous arrange) mais on va le voir plus loin, nous n'avons même pas besoin de le définir (car c'est la dénivelée entre les points A et B qui compte).

Caractéristiques au point B:

- \Rightarrow Pression : p_{B} (c'est l'inconnue du problème ; il faut la trouver...)
- \Rightarrow Altitude : z_B ; même remarque que pour z_A .

Application de la loi de l'hydrostatique : $p + \rho \cdot g \cdot z = C^{ste}$

Cette relation est valable (vraie) en tout point du milieu fluide. On peut donc l'écrire en A et en B :

En
$$A: p_A + \rho \cdot g \cdot z_A = C^{ste}$$

En
$$B: p_R + \rho \cdot g \cdot z_R = C^{ste}$$

En identifiant les deux relations, on a :

$$p_A + \rho \cdot g \cdot z_A = p_B + \rho \cdot g \cdot z_B$$

$$p_A + \rho \cdot g \cdot z_A - \rho \cdot g \cdot z_B = p_B$$

 $p_B = p_A + \rho \cdot g \cdot (z_A - z_B)$ (on le voit ici que peut importe les valeurs respectives de z_A et z_B , c'est la dénivelée $h = z_A - z_B$ qui compte...)

Comme
$$h = z_A - z_B$$

$$p_B = p_A + \rho \cdot g \cdot h$$

Application numérique :

$$p_B = p_A + \rho \cdot g \cdot h$$
$$= 10^5 + 1000 \times 9,81 \times 5$$

$$p_B = 149050 \ Pa$$

Comme $1 \, bar = 10^5 \, Pa$, on a: $p_B = 149050 \times \frac{1}{10^5} = 1,49 \, bar$

EXERCICE 4

A quelle profondeur maximale le plongeur de l'exercice précédent peut-il descendre si la pression ne doit pas excéder $P_{max} = 4.7 \ bar$.

On part à nouveau de la loi de l'hydrostatique appliquée entre les points A et B :

$$p_A + \rho \cdot g \cdot z_A = p_B + \rho \cdot g \cdot z_B$$

L'interprétation de l'énoncé vaut que l'inconnue soit z_B ; il faut donc « retourner » l'équation pour avoir z_B en fonction du reste :

$$p_A - p_B + \rho \cdot g \cdot z_A = \rho \cdot g \cdot z_B$$

$$z_B = \frac{p_A - p_B + \rho \cdot g \cdot z_A}{\rho \cdot g}$$

L'expression analytique de $z_{\it B}$ est trouvée mais on peut l'écrire plus « proprement » :

$$z_{B} = \frac{p_{A} - p_{B} + \rho \cdot g \cdot z_{A}}{\rho \cdot g}$$

$$= \frac{p_{A} - p_{B}}{\rho \cdot g} + \frac{\rho \cdot g \cdot z_{A}}{\rho \cdot g}$$

$$= \frac{p_{A} - p_{B}}{\rho \cdot g} + \frac{\rho \cdot g}{\rho \cdot g} \cdot z_{A}$$

$$= \frac{p_{A} - p_{B}}{\rho \cdot g} + 1 \times z_{A}$$

$$z_{B} = z_{A} + \frac{p_{A} - p_{B}}{\rho \cdot g}$$

Application numérique :

$$z_{B} = z_{A} + \frac{p_{A} - p_{B}}{\rho \cdot g}$$

$$= 0 + \frac{10^{5} - 4.7 \cdot 10^{5}}{1000 \times 9.81}$$

$$z_{B} = -37.72 \text{ m}$$

EXERCICE 5

Un plongeur est situé à une profondeur de $h=5\cdot m$ dans l'eau d'un lac ($\rho=1000~kg\cdot m^{-3}$) sur une planète dont le champ de pesanteur vaut le tiers de celui de la terre et sans atmosphère. Calculer la pression à laquelle il est soumis.

Ici, on a:
$$p_A = 0$$
 et $g = \frac{1}{3} \times 9.81 = 3.27 \text{ m} \cdot \text{s}^{-2}$

Le traitement analytique est exactement le même qu'à l'exercice 3 dont on reprend l'expression de départ :

$$p_B = p_A + \rho \cdot g \cdot h$$
$$= 0 + 1000 \times 3,27 \times 5$$

$$p_{B} = 16350 \ Pa$$

Comme
$$1 bar = 10^5 Pa$$
, on a : $p_B = 16350 \times \frac{1}{10^5} = 0,163 bar$ (arrondir au $1/1000^{\text{ème}}$ est ici suffisant)